278 research outputs found

    Epigenetics of Lipid Phenotypes

    Get PDF
    Dyslipidemia is a well-established risk factor for cardiovascular disease, the main cause of death worldwide. Blood lipid profiles are patterned by both genetic and environmental factors. In recent years, epigenetics has emerged as a paradigm that unifies these influences. In this review, we have summarized the latest evidence implicating epigenetic mechanisms—DNA methylation, histone modification, and regulation by RNAs—in lipid homeostasis. Key findings have emerged in a number of novel epigenetic loci located in biologically plausible genes (eg, CPT1A, ABCG1, SREBF1, and others), as well as microRNA-33a/b. Evidence from animal and cell culture models suggests a complex interplay between different classes of epigenetic processes in the lipid-related genomic regions. Although epigenetic findings hold the potential to explain the interindividual variability in lipid profiles as well as the underlying mechanisms, they have yet to be translated into effective therapies for dyslipidemia

    Genetic-Based Hypertension Subtype Identification Using Informative SNPs

    Get PDF
    In this work, we proposed a process to select informative genetic variants for identifying clinically meaningful subtypes of hypertensive patients. We studied 575 African American (AA) and 612 Caucasian hypertensive participants enrolled in the Hypertension Genetic Epidemiology Network (HyperGEN) study and analyzed each race-based group separately. All study participants underwent GWAS (Genome-Wide Association Studies) and echocardiography. We applied a variety of statistical methods and filtering criteria, including generalized linear models, F statistics, burden tests, deleterious variant filtering, and others to select the most informative hypertension-related genetic variants. We performed an unsupervised learning algorithm non-negative matrix factorization (NMF) to identify hypertension subtypes with similar genetic characteristics. Kruskal–Wallis tests were used to demonstrate the clinical meaningfulness of genetic-based hypertension subtypes. Two subgroups were identified for both African American and Caucasian HyperGEN participants. In both AAs and Caucasians, indices of cardiac mechanics differed significantly by hypertension subtypes. African Americans tend to have more genetic variants compared to Caucasians; therefore, using genetic information to distinguish the disease subtypes for this group of people is relatively challenging, but we were able to identify two subtypes whose cardiac mechanics have statistically different distributions using the proposed process. The research gives a promising direction in using statistical methods to select genetic information and identify subgroups of diseases, which may inform the development and trial of novel targeted therapies

    Sickle cell trait and risk of cognitive impairment in African-Americans: The REGARDS cohort

    Get PDF
    Background: Sickle cell anemia may be associated with cognitive dysfunction, and some complications of sickle cell anemia might affect those with sickle cell trait (SCT), so we hypothesized that SCT is a risk factor for cognitive impairment. Methods: The Reasons for Geographic and Racial Differences in Stroke (REGARDS) study enrolled a national cohort of 30,239 white and black Americans from 2003 to 7, who are followed every 6 months. Baseline and annual global cognitive function testing used the Six-Item Screener (SIS), a validated instrument (scores range 0-6; ≤ 4 indicates cognitive impairment). Participants with baseline cognitive impairment and whites were excluded. Logistic regression was used to calculate the association of SCT with incident cognitive impairment, adjusted for risk factors. Linear mixed models assessed multivariable-adjusted change in test scores on a biennially administered 3-test battery measuring learning, memory, and semantic and phonemic fluency. Findings: Among 7743 participants followed for a median of 7·1 years, 85 of 583 participants with SCT (14·6%) developed incident cognitive impairment compared to 902 of 7160 (12·6%) without SCT. In univariate analysis, the odds ratio (OR) of incident cognitive impairment was 1·18 (95% CI: 0·93, 1·51) for those with SCT vs. those without. Adjustment did not impact the OR. There was no difference in change on 3-test battery scores by SCT status (all p > 0·11). Interpretation: In this prospective cohort study of black Americans, SCT was not associated with incident cognitive impairment or decline in test scores of learning, memory and executive function. Funding: National Institutes of Health, American Society of Hematology

    Age and Sex Are Associated with the Plasma Lipidome: Findings from the GOLDN Study

    Get PDF
    Background Developing an understanding of the biochemistry of aging in both sexes is critical for managing disease throughout the lifespan. Lipidomic associations with age and sex have been reported, but prior studies are limited by measurements in serum rather than plasma or by participants taking lipid-lowering medications. Methods Our study included lipidomic data from 980 participants aged 18–87 years old from the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN). Participants were off lipid-lowering medications for at least 4 weeks, and signal intensities of 413 known lipid species were measured in plasma. We examined linear age and sex associations with signal intensity of (a) 413 lipid species; (b) 6 lipid classes (glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, fatty acids, and acylcarnitines); and (c) 15 lipid subclasses; as well as with the particle sizes of three lipoproteins. Results Significant age associations were identified in 4 classes, 11 subclasses, 147 species, and particle size of one lipoprotein while significant sex differences were identified in 5 classes, 12 subclasses, 248 species, and particle sizes of two lipoproteins. For many lipid species (n = 97), age-related associations were significantly different between males and females. Age*sex interaction effects were most prevalent among phosphatidylcholines, sphingomyelins, and triglycerides. Conclusion We identified several lipid species, subclasses, and classes that differ by age and sex; these lipid phenotypes may serve as useful biomarkers for lipid changes and associated cardiovascular risk with aging in the future. Future studies of age-related changes throughout the adult lifespan of both sexes are warranted. Trial registration ClinicalTrials.gov NCT00083369; May 21, 2004

    SNPs located at CpG sites modulate genome-epigenome interaction

    Get PDF
    DNA methylation is an important molecular-level phenotype that links genotypes and complex disease traits. Previous studies have found local correlation between genetic variants and DNA methylation levels (cis-meQTLs). However, general mechanisms underlying cis-meQTLs are unclear. We conducted a cis-meQTL analysis of the Genetics of Lipid Lowering Drugs and Diet Network data (n = 593). We found that over 80% of genetic variants at CpG sites (meSNPs) are meQTL loci (P-value < 10(−9)), and meSNPs account for over two thirds of the strongest meQTL signals (P-value < 10(−200)). Beyond direct effects on the methylation of the meSNP site, the CpG-disrupting allele of meSNPs were associated with lowered methylation of CpG sites located within 45 bp. The effect of meSNPs extends to as far as 10 kb and can contribute to the observed meQTL signals in the surrounding region, likely through correlated methylation patterns and linkage disequilibrium. Therefore, meSNPs are behind a large portion of observed meQTL signals and play a crucial role in the biological process linking genetic variation to epigenetic changes

    Advancing Stroke Genomic Research in the Age of Trans-Omics Big Data Science: Emerging Priorities and Opportunities

    Get PDF
    Background—We systematically reviewed the genetic variants associated with stroke in genome-wide association studies (GWAS) and examined the emerging priorities and opportunities for rapidly advancing stroke research in the era of Trans-Omics science. Methods—Using the PRISMA guideline, we searched PubMed and NHGRI- EBI GWAS catalog for stroke studies from 2007 till May 2017. Results—We included 31 studies. The major challenge is that the few validated variants could not account for the full genetic risk of stroke and have not been translated for clinical use. None of the studies included continental Africans. Genomic study of stroke among Africans presents a unique opportunity for the discovery, validation, functional annotation, trans-omics study and translation of genomic determinants of stroke with implications for global populations. This is because all humans originated from Africa, a continent with a unique genomic architecture and a distinctive epidemiology of stroke; as well as substantially higher heritability and resolution of fine mapping of stroke genes. Conclusion—Understanding the genomic determinants of stroke and the corresponding molecular mechanisms will revolutionize the development of a new set of precise biomarkers for stroke prediction, diagnosis and prognostic estimates as well as personalized interventions for reducing the global burden of stroke
    • …
    corecore